Partnerships that get results: Global. Fluid. Connected. Join Us!

Loyola University Medical Center

Department of Medicine

Division of Hepatology

2160 S. First Ave
Mulcahy Center, Rm 1610

Maywood, IL 60153, USA


Phone: 708-216-4682

Fax: 708-216-6299

Harel Dahari

Dr. Dahari on the advances and challenges of the HCV research presented:

Q: What is the biggest change today for patients receiving HCV treatment?

A: There has been a dramatic change for patients receiving HCV treatment. Our research presented here is like a timeline of improvement for patient care. Originally the treatment for HCV was long, averaging 48 weeks, was expensive, complicated to administer, requiring a medical office visit and administering thru the blood stream and the side-effects were severe and unpleasant. Today, we have a pill-based treatment with few-to-no side effects and the treatment schedule varies by patient but is nowhere near the previous 48 weeks. In some cases, it is 6 or 8 weeks of treatment. We are looking at a future where the treatment cycle and administering will be in the patient’s hands, of course with the proper medical oversight to ensure safety and efficacy.

Q: Why did the research stay level for a decade and then leap frogged in results?

A: I need some insight for this answer.

  • HCV not a national or global priority?

  • Stigma

  • Lack of data


Q: How unique or what are the major advantages to mathematical modelling when conducting research in HCV treatments and patient care?

A: I need some insight here.

  • Were there other researchers using mathematical modelling when researching HCV treatments and cures?

  • Did science in general become more interdisciplinary and break down traditional silos?

  • Was funding patterns/models for research a factor?

Q: What are the advantages of mathematical modeling in research for hepatitis C virus (HCV) treatments and advances in patient care?


A: First, it is helpful to understand that in the hard sciences such as physics, it is taken for granted that there are formulas (or models) to follow. These are considered the building blocks of research. For the life sciences, this is not necessarily the case. Putting complicated organic systems into a model is difficult and time-consuming. However, this time invested up front is incredibly effective and efficient once the models are developed.


Creating these models has two key advantages that directly impact the areas of treatment research and advances in patient care. In the case of research for treatments, once these models are established, the research is more efficient and effective than if proceeding without models. A by-product of creating these models is the contribution to the broader scientific community. This new knowledge can be used in any area of research referred to as basic science. It can be applied to areas of research well beyond hepatitis treatments or a cure.


Models play a critical role in the advancement of patient care. Without them, personalized treatment would not be possible, as well as the associated benefits of cost-savings and shortened treatment schedules. With respect to the World Health Organization (WHO) goal of eliminating HCV globally, the models are critical in scaling up treatments to understand their effectiveness. This is especially critical in populations like people who inject drugs (PWID) where infection and reinfection rates can undermine this goal. Models are extremely effective and flexible at macro and micro levels. They can be used to map the virus itself, the person (host) who has the virus, or rates of infection and modes of transmission within groups.


Q: What is the next big challenge in Hepatitis research?

A: I see the immediate challenge divided into two areas. One is the continued effort to eliminate HCV. In the course of tackling a challenge this big, it is important to remember the process one needs to go through. It is very long and complicated and there is no “straight-line” that is the nature of research on the edge. But we have finally reached a moment where we started with treatment, have made great progress in prevention, and now the so-called third leg of the stool is possible, which is elimination. This is a very real possibility and a goal that will take hard work and focus. Central to this goal are three components: making diagnosis easy and stigma-free, making treatment more accessible and affordable, and ultimately, empowering patients to self-administer and monitor treatment to cure.


The second immediate challenge is Hepatitis B and Hepatitis D (Delta). These areas were not as well funded or researched previously because of the extent and awareness of HCV, but that has changed. We are seeing a lot of interest, funding and research happening at the moment. Our lab is also involved in this expanded scope of Hepatitis research. It is really an exciting time in the field. As you asked before about why the research remained flat for so long, we have now entered an era of greater strides forward, global cooperation in real-time in most cases and the ability to collect and analyze massive amounts of data quite quickly.

Desarae Echevarria

Ms. Echevarria talking about her experience with Dahari Lab

Q: When did you start working in Dahari Lab and how did you get involved?

A: When I started working with Dr. Dahari during my Senior Year of High School, the lab was called PETM. It was initially a mentorship program that appealed to my interest in math and science. Post-graduation I continued to work with the lab because I learned the skills necessary for data analysis of a research paper in progress.