
DahariLAB
Mathematical/Computational Virology & Medicine
Accounting for Space--Quantification of Cell-to-Cell Transmission Kinetics Using Virus Dynamics Models.
Abstract
BACKGROUND AND AIMS:
Mathematical models based on ordinary differential equations (ODE) that describe the population dynamics of viruses and infected cells have been an essential tool to characterize and quantify viral infection dynamics. Although an important aspect of viral infection is the dynamics of viral spread, which includes transmission by cell-free virions and direct cell-to-cell transmission, models used so far ignored cell-to-cell transmission completely, or accounted for this process by simple mass-action kinetics between infected and uninfected cells.
METHODS:
In this study, we show that the simple mass-action approach falls short when describing viral spread in a spatially-defined environment. Using simulated data, we present a model extension that allows correct quantification of cell-to-cell transmission dynamics within a monolayer of cells.